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The wave field outside the stamp is representable as 

u (p, t) = aRe emio’ i *4jHF) (Pip) (2.7) 
j=l 

Let us consider the case v = 0.2, a = 1, ~~2 = 11. In this case the function K ( ZL) has 

the poles pi = 0.4984, p2 = 2.004, ps = 3.393 and the zeros z1 = 2.031, z2 = 1.063 

on the real semi-axis. For the approximation M2 = 110, B = 15, zg = 2.397 i. The 
error will not exceed 6% for approximation by a fourth degree polynomial. 

Formulas (2.6) and (2.7) permit computation of the stresses under the stamp in a do- 

main not adjoining its edge. Upon approaching the edge of the stamp, the stresses grow 

as (r - a)-‘/~ and this singularity can easily be isolated by using the method [5], for 

example, 

Waves on the layer surface in the far zone are computed by means of (2.7). To com- 
pute the field in the nearest zone it is necessary to use (2.5); this formula can describe 

the wave field in a zone arbitrarily near to the stamp because the parameter B increases. 
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The problem of optimizing the frequencies of an elastic plate vibrating in an 
ideal fluid is investigated. A formulation of the appropriate hydroelasticity prob- 
lem is presented. The “external” hydrodynamic problem is solved by methods 
of complex variable function theory and the forces exerted by the fluid on the 
plate are determined. An integro-differential equation describing one-dimensi- 
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onal plate vibrations in a fluid is derived. A formulation and investigation of 
the optimization problem are given. A numerical argorithm to determine the 

optimal modes is elucidated and results of computations on an electronic com- 

puter are presented. 

Determination of the optimal modes of elastic bodies whose fundamental na- 

tural vibrations frequency is a maximum (for a given volume of weight) is of 
interest in connection with some problems of designing structures working under 

dynamic conditions, and in particular, in flutter problems. The first investiga- 

tions in this area were carried out in [l- 31 in the example of optimizing the 
natural frequencies of a string. The corresponding optimization problems for 
elastic beams were solved in [4 - 91 for different kinds of vibrations (transverse, 
longitudinal and torsional) and boundary conditions, Plate optimization prob- 

lems were investigated in [lo - 121. The dual problem of weight minimi~tion 
for a given fundamental tone frequency was considerd in some of the papers lis- 
ted. 

1. The problem of plrte vibration, in an iderl fluid. Letuscon- 
sider the plane hydroelasticity problem concerning small vibrations of a thin elastic 
plate in an infinite ideal fluid volume. As is known, the investigation of thecylindri~al 
strain of a long rectangular plate, clamped along the long edges, and of the plane fluid 

vibrations which originate, reduces to the problem mentioned. The zy-plane in which 
the plate and fluid vibrations occur is perpendicular to the long edges of the plate. The 

points A (X = - I, y = 0) and B (z = I, y = 0) on the zg-plane correspond to 
clamped edges. The plate width is 22. It is assumed that the plate thickness is varia- 

ble in the z-coordinate, i. e, IL I h (x), and does not vary in the z-direction (the axis 

is parallel to the fixed edges of the plate). Letting t denote the time,and u = u (z, 
t) and Q = Q (5, t) the plate deflection and fluid reaction functions, respectively, 

let us write the equation for cylindrical plate vibrations 

(1.1) 

Here L) is the bending stiffness of the plate, E is Young’s modulus, v is the Pois- 
son’s ratio, Pr is the specific density of the plate material. For definiteness, let us take 
the following boundary conditions at the points A and B, correspondint to hinge-sup- 

port of the plate edges 
u=hs.+o (1.2) 

The fluid motion is assumed irrotational, with the velocity potential r$ = (p (s, Y, 

2) satisfying the Laplace equation and the linearized boundary conditions 

PCp / axa -j- da(p / ay2 = 0 (1.3) 

(dip/dy)* = au/at, --l<x<& L/=0 (1.4) 

Here and henceforth, the plus and minus superscripts will denote values of the approp- 
riate quantities on the upper and lower edges of the slit - 2 < x < I, y = 0. The 
boundary conditions (1.4) are obtained by moving the boundary conditions of non-pene- 
tration of the fluid through the plate surface on the z-axis. Assumptions about the small- 
ness of the diflections u and the thickness h, the smoothness of the function h (s),and 
also the inseparability of the flu$d and plate motions are used here. 
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The pressure distribution in the fluid p = p (5, y, t) is calculated by using the 

Cauchy-Lagrange integral 

P = Pa - Pe[S ++ (v~)‘]~pp,- p2z (1.5) 

where ps is the fluid density, pa is the fluid pressure at infinity. Neglecting of terms 
ps (Vq)2 is based on the assumption of smallness of vibrations and the use of linear the- 

ory. The relationship (1.5) permits determining p if the potential cp has been found. 
The fluid reaction Q in the right side of the vibrations equation (1.1) is determined 

by the linearized formula 
Q =p--p+ (It61 

where p+ = 0, (5, 0, t))+ and p- = (p (z, 0, t))- denote the pressure distribu- 
tions for the upper and lower edges of the slit - I < x < 1, y = 0 , respectively. 
Determining Q from (1.5), (1.6) and substituting the expression found into (1. l), we 

convert the plate vibrations equations into 

We now have the closed boundary value problem of hydroelasticity. The hydrodyna- 

mic problem (1.3), (1.4) to determine the potential cp and the problem (1.2),( 1.7) on 
plate vibrations are connected, since the velocity distributions of the plate vibrations en- 

ter into the boundary conditions (1.4) and the derivatives of the potential tp are in the 
right side of (1.7). 

Let us seek the solution of the problem (1.2) - (1.4),( 1.7) as 

u = eiof U (z), cp = ioe”’ CD (z, y) (1.8) 

For convenience in the analysis and solution of the problem, let us pass to dimension- 
less variables and the notation 

xl = x I 1, y’ = y I 1, U’ = U I 1, UY = (DIP, h’ = lh / S (1.9) 

!A2 = 12p,P(l - Yy_o2 / FE, a = p2P / pls 

where S is thecross-sectional area of the plate. The primes on the dimensionless va- 
riables are henceforth omitted. 

Substitution of (1.8), (1.9) into (1.2) - (1.4), (1.7) results in the following relation- 
ships to determine the amplitude functions U (x) and @ (x, y) : 

-Q2[hU--a(@+--@)] = 0 (1.10) 

(1.11) 

aw~a22+aw/ay2=0 (1.12) 

(am/ay)*=U, ---1626i, Y=O (1.13) 

Therefore, by separating the space and time variables, the initial problem (1.2) - 

(1.4), (1.7) is reduced to the boundary value problem (1. lo), (1.11) for eigenvalues of 
the differential equation (1.10) under the boundary conditions (1.11) and its related 
boundary value problem (1.12) (1.13) for the Laplace equation in the exterior of the 
slit -l<x<l, y=o. 



2. Solution of ths hydrodynamic problem. Let us determine the(po- 
tential) function @ (5, y), which is a solution of the boundary value problem (1,12), 
(1.13). To this end, let us consider the auxiliary unction w = y + icf>, which is ana- 
lytic in a plane with the slit -1 <x Q 1, y ;L: 0. 

From the Cauchy-Riemann conditions and the boundary conditions (1.13) we will have 

$-P/fX==a@/fiay=u 

from which 

Y = 5 v(E)&+C =f(x)+C (2.1) 
-1 

where C is a constant of integration. The problem of determining the potential CD 
reduces to seeking the imaginary part of the analytic function W whose real part in 

the segment r-1, l] is 
Re W = Y = f (X) + C 

Using the results in [13], 1141, let us write down the solution of this problem (z = 

The relatio~hip (2.3) determines the constant C. 

Taking into account that 

we obtain from (2.3) 1 

c=$ j f(4)d4 
_l lf42-1 

(2.2) 

(2.3) 

(2.4) 

Furthermore, using the expression (2.4) for C and the formula 

_-!-~(HJ~-&_+(~)“_+ 

-1 

we perform the following manipulations in the representation (2.2) for u’: 

Let us evaluate the quantity @+ by passing to the limit in (2.5) as z = z -/- 1’~ + 
x + i0 (0 < y --s- + 0) and extracting the imaginary part in the expression obtained 
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The integral in (2.6) is understood in the sense of the Cauchy principal value. We 
have the following for the potential difference on the upper (plus) and lower (minus) 
edges of the slit 

CD+-@-= zQr+= VP_ JG=e f 03 de ~ 
s _-l (4--z) Vi_ 

(2.7) 

Let us convert the integral (2.7). By definition of an integral in the principal value 
sense, we have 

2Qt=vp+_{r(?E~*= 

Furthermore, integrating by parts and using (2.1) for f (t), we obtain 

2@+ = lim 
TI 

K(z-- P.5~~ScU(l)dl-_K(Z+e,s)~~Li(t)dt- (2.8) 
L-+0 -1 -1 

cc--k 1 

s 
R (t, 2)U (qdt - 

s 
2-c (t, ST) tqtp] 

x-f-c 

K(I:s) = -$-I*/~[, r = [ [:I:))((:-$:; 1”’ 

Let us note that all the expressions in the right side of (2.8) (written in the square 

brackets) are finite, and therefore, the integration by parts used above is possible, As 

a -+ 0 the sum of the first two terms is (2.8) vanishes and the last two integrals con- 

verge. Therefore, the desired dependence of the value of the potential jump @+ - 
@,” = 2@+ on the plate deflection distribution is 

XI+ zz - $K <r, 4 27 (r)dt (2.9) 

3, Formulrtfon of the optimfrrtlon problem, Using the results of 
Sect. 2, let us write down the beam vibrations equation. Substituting the expression 

(2.9) found for the difference in the hydr~y~mic potentials into (1.10). we have 

LU = &(h+)- wjhu +a s K(t, z)U(t)dt) = 0 (3.1) 

-1 

Let us consider the homogeneous boundary value problem for the eigenvalues of the 

integro-differential equation (3.1) under the boundary conditions (1.11). The eigen- 
functions u (2) and the corresponding eigennumbers $2 (frequencies) are determined 

from the solution of the problem (3.1),( 1.11) for a given thickness distribution h = 

h. (I). From the equation (U, LU) = 0 we determine the Rayleigh quotient 

n2=J(h,U)=I(la.U)[ShU2dx+ 
-1 

(3.2) 

a s 5 qx, t)U(s)U (t)dxdt]l 
-1-l 
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-1 

The minimal eigenvalue (fundamental frequency) of the self-adjoint problem (3.1), 

(1.11) (for a given function h = h(s)) equals 

Q2 = minrrJ (h, U) (3.3) 

The relationship (3.3) is the known Rayleigh variational principle (see [lS], for exam- 
ple). The minimum of J in U is calculated in the set of all continuous twice-differ- 

entiable functions U (5) satisfying the boundary conditions 

u (1) = u (--1) = 0 (3.4) 

It is not required to satisfy the boundary conditions ~s(~sU / &?) = 0 imposed at 

x = + 1 in advance, since these conditions are “natural” for the functional J in(3.2) 

and thedesired extremum of this functional, found under the conditions (3.4), will auto- 
matically satisfy the conditions hs(@U / &$) = 0 at the points x = - 1 and z = 

1. The function U (X) realizing this minimum will correspond to the minimal eigen- 

value. The Euler equation for the function U (x) in the vibrational problem (3.2) - 

(3.4) agrees with the equation (3.1). 
The optimization problem solved below consists of seeking a function h (x) satisfying 

the isoperimetric condition of constant cross-sectional area of the plate 
1 

s 
hdx=f (3.5) 

-1 

and maximizing the minimal eigenvalue, i. e. 

!A2 = maxh minu J (h, U) (3.6) 

The formulated optimization problem (3.2) - (3.6) is one-parametric with the para- 

meter tc = @sE2 / pls. For 01 = 0 (the case of no fluid), we arrive at the known opti- 
mization problem for the ~ndamen~l frequency considered first in [4]. The difference 

existing in comparison to [4] in the case a = 0 is due to the difference in the depen- 
dences D = D (h) taken (the optimization problem for beams of circular cross sec- 

tion was considered in [4], for which D - h2, where h is a variable radius of the sec- 

tion). 
Let us obtain the necessary optimality condition in the problem (3.2 - 3.6). To do 

this, writing down the Euler equation in h for the ~nc~o~I(3.2) with the isoperimetric 

condition (3.5), we have 
3hz(d2U / dx2)a - !SU= = c2 

where cz is the Lagrange multiplier corresponding to the isoperimetric condition (3.5). 

4. Method of tils numerical rolutfon, Let us derive the fundamental 
relatio~i~ used in the numerical solution of the optimi~tion problem. Let the func- 

tion h = h,(x) in (3.2) satisfy the isoperimetric condition (3.5), and let u = t’,(z) 

be the solution of the variational problem (3.2) - (3.4) for given h = h,(x), In addi- 
tion to h, (s) , let us consider the function h,(z) defined by the formula 

h, = h, + 6h (4.1) 
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where 6h denotes a small variation in the function h. In order for the function h,(z) 
to satisfy the isoperimetric condition (3.5), let us impose the following constraint on the 
function 6h: 1 

s 
6hdx = 0 (4.2) 

-1 

Let us calculate the variation of the functional (3.2) due to the variation in the thick- 
ness dis~but~~ (4.1). 

Using the Euler equation (3.1) for the function Us and performing elementary mani- 
pulations, associated with evaluation of the first variation of the functional, we obtain 

&Y = s Mhdx, 
-1 

A=_[3h2j~~--2(iz]jI(la,U) (4.3) 

If the variation 8h is given as (o > 0 is a small positive number) 
, 

t3h=o(A-+ 5 A&x) 
-1 

(4.4) 

then it is easy to see by direct substitution that condition (4.2) will be satisfied and the 
linear part of the increment in the functional, i. e. its first variation,is non-negative 

6W > 0 (4.5) 

Therefore, selecting a sufficiently small positive number o and evaluating the new 
thickness distribution by means of (4. I), (4.3), (4.4), the growth of the ~nctional being 
optimized can be achieved. Condition (4.5) will hence be satisfied for any positive o. 

The relationships(4. l), (4.3), (4.4) permit construction of the following algorithm to 
seek the optimal thickness distribution h=h (x). An initial approximation h, is given 
for the function h (x) which satisfies the isoperimetric condition (3.5). For a given 
h = h,(s) the variational problem (3.2) - (3.4) is solved and the optimal distribution 
u = U,(Z) corresponding to the thickness distribution h = h,(x) is found (the des- 
cription of the method of solving the variational problem (3.2) - (3.4) is presented be- 
low). Furthermore, using the ti&) dis~bution found, the variation Sh is calculated 
by means of (4.3),(4.4) and a new approximation h, = h, + 6h is found for the thick- 
ness distribution, By solving the problem (3.2) - (3.4). a new approximation u,(z) 
for the function U (z) is sought by means of the distribution hI found, etc. The calcu- 
lation process described is repeated cyclically and is terminated upon compliance with 
the condition (e > 0 is a sufficiently small number) 

f J (hJJ - J (hi-l, ui-I) 1 ( 8 (4.6) 

Therefore, the optimization algorithm described reduces to the successive solution of 
the variational problem (3.2) - (3.4), the calculation of new approximations for the 
function h by means of (4.1) - (4.4) and verification of (4.6). Let us note that in car- 
rying out the compu~~ons according to this algori~m a check on the residuals in com- 
plying with the necessary extremal conditions is also realized. 

The method of local variations ([16]) is used to solve the variational problems (3.2)- 
(3.4). Symmetry of the problem (3.2) - (3.4) relative to the point x = 0 was used and 
the solution was sought on the segment - 1 6 z < 0. The segment [ - 1 P 0] is divided 
into TZ equal cells. Centers of the cells with the coordinates si = - (n + 0,5 - i)/n, 
i = 0, 1, . . .) n + 1 were selected as nodes of the mesh, The introduction of fictitious 



points s,and x,,+r which do not belong to the segment [ - 1, 0] is for convenience in 
the finite difference approximation and standardization of the calculations. The central 
differences 

NJ 

( ) - x=si = (uitl+ Ui-l- 2U,)/(Ax)2, cl22 Iii 7 U (xi) 

were used to approximate the derivatives. 

The integrals in (3.2) for J were replaced by the following quadratures 

0 

s hPdx - _ i hiUi2Ax 

-1 1 

0 0 n 

' 
s s 

K (I. t) CT (I) U (t) dxdt z 2 Ki,UiUj (Ax)2 
-1-l i,j=l 

The step in the variation of the function was changed a half division between 10-r 
and 10+ in solving the problem by the method of local variations. The remaining pa- 
rameters of the described computational process were set equal to n = 30, AX = l/30, 
and e = 10-4. 

The optimal modes were computed for the following values of the parameter a = 0; 
O.O25:2n ( n = 0, 1, . . .) 8. A constant thickness distribution h, (I) = r/2 was selec- 
ted as initial approximation h, of the function h (5) for each of the mentioned a values, 

and the deflection distribution and value of the frequency squared W, corresponding to 

a constant thickness distribution, were determined in the first stage of the computations. 

S-9 

Fig. 1 

Shown in Fig. 1 are dependences of the frequency squared Q2 on a for optimal 
plates (curve I) and for constant-thickness plates (curve 2). Also shown in the optimal 
thickness distribution (symmetric relative to J’ = 0) for a = 6.4. 

The function /L(X) reaches a maximum for 1c = 0 and tends to zero as II: tends to 
+I, i. e. upon approaching the hinge-supported plate ends. The dash-dot line shows -- 
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the initial approximation for the function h&). Let us note that the gain in SF is 

23.6% for a = 0 and 38b0 for a = 1.6 . 

6. Que#tfom of the foundation, Let us consider the eigenvlaue boundary 

value problem (1. l), (3.1) for the linear integro-differential equation (3.1) under the 
boundary conditions (1.11). to whose solution reduces an investigation to harmonic vi- 

brations of an elastic plate in an ideal fluid, Let us show that the eigennumbers of the 

problem (1. II), (3.1) are real, and the Rayleigh va~ational principle (ES]) can be used 
to seek the minimal (first) eigenvalue. To prove that the eigennumbers are real and the 
Rayleigh principle applicable, as follows from general theorems (see [15], for example), 

it is sufficient to establish that the boundary value problem under consideration is self- 

adjoint and completely definite. 
The proof of self-adjointness of the boundary value problem (1.11),(3.11) reduces to 

verifying the equality 
(V, LiU) = (U, Liii) (5.1) 

where U and V are continuously quadruply differentiable functions satisfying the boun- 
dary conditions (1.11) and L, and I,, denote the following linear operators (L = 

The parentheses in (5.1) denote the scalar product, understood to be an integral of the 
product of the functions in the parentheses over the segment [ -1, 11. Self-adjointness 

of the operator L, is established by integrating by parts and using conditions (1.11) 

To verify self-adjointness of the second operator in (5. Z), we first establish the sym- 
metry of the kernel K (t, x). Taking into account that r (t, z)= l/r (5, 1) (see 
(2.8)), and performing elementary calculations, we obtain 

+I 1 + 7 (2, t) 
1 -r (5, t) 

= K (z, t) 

Furthermore, using the symmetry property remarked in (5,4), let us establish the equal- 
ity required 

(V,LsU)= ~NIds+a {V(z)(Sz ~u(~)~(~*~)~~= (5.5) 

-1 -1 -1 

1 

1 wv,us+a5 U(I)dZ {v(t)K(t, e)dt = (K W) 

-1 -1 -1. 

We conclude on the basis ,of the equalities (5.3) and (5.5) proved, that the boundary 
value problem (1. ll), (3.1) is self-adjoint. 

Let us prove that the problem (1. ll), (3.1) is completely definite, i. e. that 

(U, &U) > 0, (i = 1,2) (5.6) 
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for all quadmply continuously differentiable functions U (z) which are not identically 

zero and satisfy the boundary conditions (1.11). 

The inequality (5.6) is established directly in the case i = ‘l 

(U, LIU) = ( U-&(hqdx = 1 h3(qdx>O (5.7) 
-1 -1 

Let us prove that the operator L, is positive. Let us write down the corresponding 
scalar product 

(U, J&U) = { hU2dz +,Iu(~)dX i K(t, 2)U(t)dt (5.8) 
-1 -1 

and let us convert the second integral in the right side of (5.8) by using the relations- 

ships ( 1.13), (2.7) and (2.9) 
1 

a 1 u (5) dz i K (t, z) u (t) di! = - a s (CD+ - CD-) u d3: = (5.9) 
-1 -1 -1 

-u( 1 @+(-gdx- s q$E)-dx)_4pgdS 
-1 -1 

Here rz denotes the external normal to the plate surface. The contour integral in 
(5.9) is taken over the plate surface S, i.e. over both edges of the slit Y = 0, -1 < 

x< 1. 
Applying Green’s formula to the contour integral, we obtain 

--a $ 
s 

cP$-hx\(V~)vv 
V 

(5.10) 

To clarify the manipulations (5.9) and (5.10) we made, let us recall that by construc- 
tion (see Sect. 2), the quantity i 

s u (t) K (t, cc) dt 
-1 

defined for an arbitrary comparison function U is the difference @+ - @- between 
the boundary values of the harmonic function @ (A@ = 0). The required estimate 

(U, J&U) = a{ (V@)‘dV + i hU=dx > 0 (5.11) 
V -1 

results from (5.8) - (5.10). 
Hence, T/’ in (5.10),(5.11) is understood to be the domain occupied by the fluid, 

i.e. the exterior of the slit y = 0, -1 < x < 1. 
From the relationships (5.3), (5.5),( 5.7) and (5.11) established, the reality of the 

eigenvalues of the problem (1.11) (3.1) and the applicability of the Rayleigh principle 
follow. 

The authors are grateful to D. I. Sherman for useful comments. 
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A fundamental solution of the theory of shallow anisotropic shells is constructed, 
the principal part is extracted and some of its properties are studied. A proce- 
dure is indicated for constructing the Green’s function for a finite shell. The so- 
lution constructed is used in investigating the state of stress of an anisotropic shell 
in the neighborhood of the point of application of a concentrated force. A solu- 
tion is given for the problem of elastic equilibrium of an anisotropic shell rein- 


